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Abstract

The effective thermal conductivity in the volume-averaged temperature equation for the dual-scale porous media is
estimated numerically. A finite-element simulation of a steady Newtonian flow in the unit cell of an idealized dual-scale
porous medium is carried out and the relevant component of the effective thermal conductivity tensor is estimated from
the resultant temperature and velocity fields. It is discovered that the conductivity is a strong function of Péclet number
as well as inter-tow spacing, but is insensitive to the rate of tow wetting or the heat-flux from tows. We also conclude
that the conductivity remains unchanged in the saturated as well as unsaturated flow regimes in dual-scale porous
media.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer during transport of liquid through por-
ous media is important in the manufacture of polymeric
composites. In liquid composite molding (LCM) pro-
cesses such as resin transfer molding (RTM), a room-
temperature thermoset resin in the form of a viscous
Newtonian liquid is injected into a closed hot mold con-
taining reinforcements such as carbon or glass fibers [1].
The temperature distribution is affected by thermal con-
duction through fibers and resin, as well as thermal con-
vection due to fluid motion. An accurate prediction of
temperature distribution is important in order to facili-
tate the optimization of LCM mold design as the resin
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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flow during the mold-filling simulations is affected by re-
sin viscosity, which in turn is a strong function of tem-
perature and degree of cure.

A porous medium where all pores are of the same
length-scale, is conventionally referred to as a single-
scale porous medium. An LCM mold containing ran-
domly oriented fibers of a random mat is an example
of the single-scale porous medium. The fibers are imper-
meable and the spacing between fibers can be treated as
homogeneous. However, if the solid phase is porous
with the pore size of a much smaller length-scale, the
porous medium is then classified as a dual length-scale
or dual porosity porous medium. Braided, woven or
stitched fiber mats used in LCM processes, where fiber
bundles are permeable to resin due to presence of pores
between fibers within the bundles, fall under this
category. The transport processes that occur inside this
dual-scale porous medium are often significantly
ed.
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Nomenclature

A area inside representative elementary vol-
ume (REV)

B̂ local deviation in B from its gap average
(bB ¼ B� hBig)

b, bi a vector field that relates local temperature
fluctuations to the gradient of gap-averaged
temperature (i.e. bT g ¼ b � rhT gig)

Cp constant pressure specific heat
fc reaction rate
g acceleration due to gravity
HR heat of reaction per unit mass
k thermal conductivity
K permeability tensor
Kth effective thermal conductivity tensor
Kth,ij i, j component of the effective thermal con-

ductivity tensor
ngt unit normal vector at the gap–tow interface

pointing from gap phase to tow phase
P pressure
q conductive heat-flux
S sink strength (rate of resin absorption by

tows per unit volume)
s width and height of periodic unit cell
T temperature
v velocity
V volume within REV
x, y, z Cartesian coordinates

Greek symbols

d, dij Kronecker delta
q density of resin
l viscosity of resin
e porosity

Subscripts

g pertaining to gap phase
t pertaining to tow phase
gt pertaining to gap–tow interface
i take values x, y and z

j take values x, y and z

Superscript

* dimensionless quantity

Others

hi volume average
hig gap average
higt average over the gap–tow interface
{}in surface averaging operator over the inlet gap

area
{}out surface averaging operator over the outlet

gap area
$ gradient operator
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different from that of the single-scale porous medium.
Babu and Pillai [2] discovered that the dual-scale porous
media with continuous inter-tow gaps1 (created by the
stitched mats only) allow the lead-lag flow to manifest
where the resin races along the gaps before fully impreg-
nating the tows.2 A schematic showing such a flow is in-
cluded in Fig. 1 where the delayed wetting of tows
behind the resin front in the gap region leads to a region
of partial saturation behind the front in such dual-scale
fiber mats. The flow in such a region is called the unsat-
urated flow and is often characterized either by a visually
observable region of a lighter hue as compared to the
darker saturated region (Fig. 2), or by a droop in the in-
let-pressure history [2].

The mathematically rigorous volume averaging
method developed by Whitaker et al. [3–11] offers a sim-
plified alternative to solving the pointwise governing
equations in complex pore space of the fibrous porous
1 Large-scale pores between tows will be referred to as the gap
phase or gap region, or just gaps.
2 Fiber bundles will be referred to as the tow phase or tow

region, or just tows.
medium created in the LCM mold; the method yields
a set of governing equations in averaged variables that
are solved numerically over the porous medium to pre-
dict the non-isothermal transport of a reactive resin dur-
ing the mold-filling process. In the past, the volume
averaging methods have been successfully used in deriv-
ing transport equations for single-phase flow in the sin-
gle-scale porous media [3–9] and were later adapted to
the dual-scale fractured porous media [3,10,11]. Using
these methods, Pillai and Munagavalasa [12,13] derived
the mathematically rigorous transport equations for
reactive non-isothermal flow in a dual-scale porous med-
ium as applicable to predicting the LCM mold-filling
process. A characteristic feature of these equations is
the presence of several source and sink terms in the
mass, energy and chemical species equations.

The objective of this paper is to study variations in
the effective thermal conductivity, a very important
parameter in the newly derived temperature equation
that governs the redistribution of energy, during the
unsaturated flow. One issue that we would like to ex-
plore is the effect of resin absorption by tows in a
dual-scale porous medium (which leads to a �sink� term
or a negative source term in the mass balance equation)
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Fig. 1. A schematic describing various flow regimes in a dual-scale porous medium. The unsaturated region is immediately behind the
flow front followed first by the saturated region that is not in local thermal equilibrium and then by the saturated region where the tow
and gap phases are in thermal equilibrium.

Fig. 2. Appearance of unsaturated flow region behind the flow
front during a point injection in a woven fiber mat. Regular
pattern of dark and light spots in the unsaturated or partially
saturated region is due to periodicity in the structure of the mat.
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on the effective thermal conductivity tensor. This will en-
able us to chart variations in the tensor as tows start de-
layed resin absorption behind the flow front and
gradually reaches fully steady-state condition during
the LCM mold-filling process in dual-scale fiber mats.

The organization of the paper is as follows. In
Section 1, a brief description of the volume averaging
method and a synopsis of the relevant volume-averaged
equations for the dual-scale porous media is presented.
In Section 2, we describe how the numerical simulation
of a steady-state, non-isothermal, 2D flow in the unit cell
of a dual-scale medium is employed to estimate the rel-
evant component of effective thermal conductivity ten-
sor. Later in Section 3, we describe the results of this
estimation in the form of a parametric study. In Section
4, conclusions and limitations of the study are presented.

1.1. Volume averaging method adapted to the dual-scale

porous media

The volume averaging method is applied to the single-
phase flow in a single-scale porous medium to derive the
balance equations at the macroscopic level by using
the balance equations for various physical quantities at
the microscopic level [3–9]. The medium is divided into
two phases, solid and liquid, and flow variables are aver-
aged over an averaging volume which is much bigger
than the individual pores and particles.

We adapted the volume averaging method to the
dual-scale porous medium created by the woven,
stitched or braided fiber mats in LCM where the two
�phases� considered were the porous fiber-tows and the
surrounding gaps [12,13]. The tows, unlike the solid
phase in single-scale porous medium, consist of liquid,



Fig. 3. Representative elementary volume for a fibrous dual-
scale porous medium.
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solid and air3 phases whereas the gaps are filled entirely
with the liquid phase. Fig. 3 describes an averaging vol-
ume for a fibrous dual-scale medium. Since the dual-
scale fibrous media such as woven or stitched fiber mats
are often periodic, the size of averaging volume can be
reduced from being much larger than the thickness of
tows to a unit cell of such a periodic medium.

The volume average hBgi of quantity Bg averaged
over the averaging volume4 is defined as

Bg

� �
¼ 1

V

Z
V g

Bg dV ð1Þ

where Vg is the volume of gap region within the averag-
ing volume of volume V as shown in Fig. 3. The volume
average hBgi is related to the gap average as

hBgi ¼ eghBgig ð2Þ

where eg the gap fraction is defined as eg = Vg/V.

1.2. Summary of volume-averaged transport equations

Pillai and Munagavalasa [12,13] rigorously derived
the macroscopic transport equations for the dual-scale
porous media using the volume averaging method, the
summary of which is presented in this section. Only
the relevant gap-averaged balance laws will be listed;
their derivation as well as the estimation of their various
3 Ideally, the air phase would be replaced by vacuum
�phase�—the proposed theory is exactly true if the interstitial
spaces in a dual-scale porous medium is a vacuum. (It prevents
the formation of air-bubbles inside tows and avoids the
accompanying complications of a two-phase flow in the porous
medium.)
4 Often referred to as the representative elementary volume

(REV) as well.
source and sink terms with the help of the single-scale
model for the intra-tow flows is presented elsewhere
[12,13].

Macroscopic mass balance equation is given as

r � vg
� �

¼ �S ð3Þ

where S is the (mass) sink term and is equal to the vol-
umetric rate of absorption of resin by the tows per unit
volume:

S ¼ 1

V

Z
Agt

vg � ngt dA ð4Þ

The minus sign of the sink term in the continuity equa-
tion suggests that the flow of the resin slows down in the
unsaturated gap region because of the absorption of the
resin by the tows. An estimation of S requires the inte-
gration of resin flux into the tows, which in turn require
solving the single-scale transport equations within the
tow region [13,16].

When the inertial and gravitational effects along with
sharp gradients in the sink term S can be neglected, the
macroscopic momentum balance equation for the gap
region simplifies to the well known Darcy�s law:

vg
� �

¼ K

lg

� r P g

� �g ð5Þ

The gap-averaged energy balance equation is given as

qgCp;g eg
o

ot
T g

� �g þ vg
� �

� r � T g

� �g� �
¼ r � Kth � r T g

� �g þ egqgHRfc þ Qconv � Qcond ð6Þ

where Kth is the effective thermal conductivity tensor for
the dual-scale porous media and is given as

Kth ¼ kgegdþ
kg
V

Z
Agt

ngtbdA�
qgCp;geg

V g

Z
V g

v̂gbdV ð7Þ

where v̂g is the deviation of vg from its gap-averaged
value (v̂g ¼ vg � hvgig); b is the vector function that
transforms the gradient of the gap-averaged temperature
into the local variations of the temperature deviation asbT g ¼ b � rhT gig . Qconv is the heat source term caused by
the release of resin heat prior to the absorption of gap
resin by the surrounding tows and is given as

Qconv ¼ qgCp;gSb T g

� �g � T g

� �gtc ð8Þ

The heat sink term created by the conductive heat loss to
tows, Qcond, is given as

Qcond ¼
1

V

Z
Agt

qg � ngt dA ð9Þ

Incidentally, both Qconv and Qcond will be negative for
the case of a cold resin invading into a pre-warmed
LCM mold. In addition, either empirical correlations
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or microscopic calculations will be needed to estimate
Kth, Qconv and Qcond during the unsaturated and satu-
rated flow regimes in a dual-scale porous medium.
Pout =0
Pin

vin

s 

y 

x(0,0) 

Target unit cell Precursor unit Cell 

Fig. 4. A Schematic illustrating the precursor and target unit
cells used in numerical simulations.
2. Effective thermal conductivity tensor

In order to solve the macroscopic energy equations,
one needs to evaluate the effective thermal conductivity
Kth before hand. The effective thermal conductivity ten-
sor given by Eq. (7) comprises of two parts: a molecular
diffusion part (the first two terms on the RHS of Eq. (7))
and a hydrodynamic dispersion5 part (the third term on
the RHS of Eq. (7)). One requires to know b distribution
(or indirectly bT g distribution) in an averaging volume to
estimate the former, and both b and v̂g distributions to
estimate the latter. It is important to realize that the b

field is also a function of pointwise velocity deviations.
The pointwise velocity deviations can be obtained by
solving the microscopic momentum balance equation
in the gap phase. Kaviany [4] provides an excellent
summary of available correlations for the phase-aver-
aged effective thermal conductivity for single-scale por-
ous media with periodic unit cells. Hsiao and Advani
[14] numerically evaluate the dependency of the phase-
averaged effective thermal conductivity term on Péclet
number, Reynolds number, ratio of thermal conductivi-
ties of the solid and fluid, porosity of the gap and
pore structure of periodic single-scale porous media.
However, their studies are confined to single-scale
porous media where the solid and liquid phases are in
local thermal equilibrium. So far, we have not come

across any research on evaluating the effective thermal

conductivity in dual-scale porous media during the unsat-

urated flow where the gap and tow phases are exchanging

energy in the form of heat while the gap liquid is being ab-

sorbed into tows.

So our objective in this paper is to evaluate the effect
of (1) the liquid absorption rate into tows (proportional
to the sink term S given by Eq. (4)), and (2) the conduc-
tive heat release rate from tows (proportional to the con-
ductive heat sink term Qcond given by Eq. (9)), on the
effective thermal conductivity Kth.

2.1. Dimensionless equations for flow modeling

In order to estimate Kth for the dual-scale porous
media, we plan to solve the pointwise fluid motion and
temperature equations in an idealized dual-scale porous
medium under the unsaturated flow conditions. Consider
the flow of resin along x direction in an idealized geom-
etry of a dual-scale porous medium as shown in Fig. 4.
5 The hydrodynamic dispersion part refer to the enhancement
of heat transfer due to the local fluctuations in resin velocity
within an averaging volume.
The porous medium is periodic and hence can be ana-
lyzed in terms of unit cells. The target unit cell is selected
in an array of infinitely long cylindrical tows whose axes
are oriented along the z direction and are periodically ar-
ranged in the x–y plane. The flow is taking place from left
to right, and the macroscopic temperature gradient is ap-
plied in the same direction as well. We intend to create a
steady-state non-isothermal flow in the unit cell such that
the y = s/2 plane passing through the center of the mid-
dle cylindrical tow is the plane of symmetry.

In order to render the equations dimensionless, as
well as to present the results in dimensionless form,
the following characteristic quantities are chosen: unit
cell width s as characteristic length, {vg,x}in as character-
istic velocity, and kg as the characteristic thermal con-
ductivity. The dimensionless temperature is defined as

T � ¼ T�fT ggin
Tmold�fT ggin

. At low Reynolds number, dimensionless

pressure is defined as P � ¼ P
qgfvgg2in

.

When the physical properties of the resin and tow
fibers are assumed to be constant, gravitational forces
to be negligible, and the flow to be non-reactive, the
dimensionless microscopic transport equations are as
follows.

The dimensionless mass balance equation is

r � v�g ¼ 0 ð10Þ
The dimensionless momentum balance equation is

v�g � r�v�g ¼ �r�P � þ l�
gr�2v�g ð11Þ

The dimensionless viscosity is defined as l�
g ¼ 1

Re where
Re ¼ qgfvg;xgins

lg
is the Reynolds number.

The dimensionless energy balance equation is

C�
p;gv

�
g � r�T �

g ¼ �r�2T �
g ð12Þ

The dimensionless specific heat is defined as

C�
p;g ¼ Pe ¼ qgfvg;xginsCp;g

kg
where Pe is the Péclet number.

If the velocity at the tow–gap interface vgjgt Æ ngt is ex-
pressed as characteristic velocity {vg,x}in multiplied by
some constant, the boundary condition for the momen-
tum balance equation at the tow–gap interface becomes



Table 1
Typical parameter values used during the numerical simulations

Dimensional
parameter

Value Dimensionless
parameter

Value

Cp,g 1316 J/kg K C�
p;gð¼ PeÞ 71.08–7108

kg 0.16 W/m K k�g 1

ks 8.70 W/m K k�s 54.375

{Pg}out 0 fP �
ggout 0

�qgjgt Æ ngt 1.5–150 W/m2 �q�gjgt � ngt 0.322–32.2
rt 0.00275 m r�t 0.34375
s 0.008 m s* 1
{Tg}in 298 K fT �

ggin 0
Tmold 373 K T �

mold 1
{vg,x}in 0.001–0.1 m/s fv�g;xgin 0–0.05

{vg,y}in 0 fv�g;ygin 0

vgjgt Æ ngt 0–0.05 m/s v�gjgt � ngt 0–0.05

lg 0.20 N s/m2 l�gð¼ 1=ReÞ 0.236–23.6

qg 1060 kg/m3 q�g 1

/ 0.26–0.61 Not defined –
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v�gjgt � ngt ¼
vgjgt � ngt
vg;x

� �
in

¼ const: ð13Þ

Similarly, the energy flux boundary condition at tow–
gap interface can be assumed to a constant. This gives
rise to the following boundary condition for the micro-
scopic energy equation.

q�gt � ngt ¼ const: ð14Þ
(Note that the normal velocity and conductive heat-flux
at tow–gap interface are not constant, and are functions
of resin flow and temperature distribution inside tows
[13,16,17]. We will be using them as parameters in our
simulations so as to estimate the bounds of Kth,ij in the
unsaturated region.)

The temperature gradient is estimated using the sur-
face-averaged temperatures as

o T �
g

D Eg

ox�
¼ T �

g

n o
out

� T �
g

n o
in

ð15Þ
2.2. Flow simulation

A finite element based multiphysics software FEM-
Lab 3.0 [15] is used to solve the microscopic continuity,
momentum, and energy equations for flow through the
gap region for the geometry shown in Fig. 4 under
steady-state conditions. The figure shows two unit cells:
a target unit cell preceded by a precursor unit cell. Eqs.
(10)–(12) are solved both in the precursor and target unit
cells. The precursor unit cell is included to ensure that
the inlet velocity and temperature profiles for the target
unit cell are as real as possible. The interface between the
two unit cells is used as an internal boundary condition.
(The result at the outlet of the precursor unit cell is used
to define the conditions at the inlet of the target unit
cell.) The dimensionless inlet velocity is specified as unity
and the dimensionless inlet temperature is specified as a
zero in the precursor unit cell. The pressure at the outlet
plane of the target unit cell is specified as zero. Symme-
try boundary conditions (y direction velocity, y-deriva-
tives of x and y direction velocities, and y-derivative of
temperature, are put equal to zero) are used at the upper
and lower surfaces of the unit cells in the gap phase.
Normal heat and volume flux conditions as per Eqs.
(13) and (14) are applied on tow surfaces. In the precur-
sor unit cell, the energy and volume fluxes across the
tow–gap interface are specified as zeros; this ensure that
the inlet velocity and temperature profiles for the target
unit cell does not change when the effect of varying the
energy flux and volume flux is studied. Table 1 lists typ-
ical parameter values used in our simulation. Lagrange
P2–P1 elements are used and a total of 22886 elements
6 572 elements were shown to be adequate to obtain conver-
gence in most cases, so our FEM mesh is over refined.
are created in the gap region of unit cells (part A of
Fig. 5). Once the microscopic transport equations are
solved, Kth,ij is evaluated using the post processing tech-
niques that enable integration of user-defined expres-
sions involving dependent variables such as velocity
components and temperature. (Parts B and C of Fig. 5
show typical velocity and temperature fields in the gap
region.)
2.3. Estimating Kth for 2D flow in the unit cell

The thermal conductivity tensor Kth,ij has a total of
nine components in 3D. We will first identify its relevant
components in the 2D flow of the idealized dual-scale
porous medium.

Recognizing that V = Vg/eg, Eq. (7) can be rewritten
(after modifying the last term on its RHS) as

Kth ¼ kgegdþ
kg
V

Z
Agt

ngtbdA�
qgCp;g

V

Z
V g

v̂gbdV ð16Þ

This equation in component form can be written as

K th;ij ¼ kgegdij þ
kg
V

Z
Agt

ngt;ibj dA

�
qgCp;g

V

Z
V g

v̂g;ibj dV ð17Þ

where i and j take values x, y, or z in a Cartesian coor-
dinate system.

As described earlier, we solved for temperature and
velocity numerically within the gap region of the unit



Fig. 5. Part (A): The FEM mesh used for flow simulations in the gap region; Part (B): Vector plot of a typical velocity field; Part(C): A
typical temperature field.
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cells. So it is only appropriate that we replace bj with the
temperature deviation term bT g within the integrals so as
to estimate Kth,ij. To that end, both sides of Eq. (16) are
post-contracted with gradient of the gap-averaged tem-
perature to yield
Kth � r T g

� �g ¼ kgegr T g

� �g þ kg
V

Z
Agt

ngtbT g dA

�
qgCp;g

V

Z
V g

v̂gbT g dV ð18Þ
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In matrix form, this can be written as

K th;xx K th;xy K th;xz

K th;yx K th;yy K th;yz

K th;zx K th;zy K th;zz

2
664

3
775

o T g

� �g
=ox

o T g

� �g
=oy

o T g

� �g
=oz

2
6664

3
7775

¼ kgeg

o T g

� �g
=ox

o T g

� �g
=oy

o T g

� �g
=oz

2
6664

3
7775þ kg

V

R
Agt

ngt;xbT g dAR
Agt

ngt;y bT g dAR
Agt

ngt;zbT g dA

2
66664

3
77775

�
qgCp;g

V

R
V g

v̂g;xbT g dVR
V g
v̂g;y bT g dVR

V g
v̂g;zbT g dV

2
66664

3
77775 ð19Þ

Consider the flow of resin along x direction in an ideal-
ized geometry of a dual-scale porous medium as shown
in Fig. 5. The porous medium is periodic and is analyzed
in terms of unit cells. The target unit cell is selected in an
array of infinitely long cylindrical tows whose axes are
oriented along the z direction and are periodically ar-
ranged in the x–y plane. The flow is taking place from
left to right, and the macroscopic temperature gradient
is applied in the same direction as well. A steady-state
non-isothermal flow is created in the unit cell such that
the y = s/2 plane passing through the center of the mid-
dle cylindrical tow is the plane of symmetry. For such a
system, Eq. (19) simplifies to

K th;xx K th;xy 0

0 K th;yy 0

0 0 kgeg

2
664

3
775

o T g

� �g
=ox

0

0

2
664

3
775

¼ kgeg

o T g

� �g
=ox

0

0

2
664

3
775þ kg

V

R
Agt

ngt;xbT g dA

0

0

2
664

3
775

�
qgCp;g

V

R
V g
v̂g;xbT g dV

0

0

2
664

3
775 ð20Þ

Details of simplifications of Kth,ij are given in the Appen-
dix.7 Note that the y and z components of the last two
vectors on the RHS of Eq. (19) go to zero due to (a)
7 It is to be noted that the effective thermal conductivity
tensor need not be a symmetric tensor. This is because of the
dyadic products within the second area integral and the third
volume integral on the right hand side of Eq. (7)—seeking a
transpose of Kth will require switching the order of the two
vectors constituting the two dyads and such �switched� dyads
will not be equal!
symmetry across the central plane y = s/2, and (b) disap-
pearance of both ngt,z and v̂g;z, respectively.

Finally the simplification of Eq. (20) yields

K th;xx ¼ kgeg þ
kg
V

R
Agt

ngt;xbT gdA

o T gh ig
ox

�
qgCp;g

V

R
V g

bT gv̂g;xdV
� �

o T gh ig
ox

ð21Þ

This relevant thermal conductivity term after non-
dimensionalization is given as

K�
th;xx ¼ eg þ

1
V �

R
A�
gt
ngt;xbT �

g dA
�

o T �
gh ig

ox�

�
C�
p;g

V �

R
V �
g

bT �
gv̂

�
g;x dV

�

o T �
gh ig

ox�

ð22Þ

(Note that division of Eq. (21) by kg renders the whole
equation dimensionless. So one may feel that evaluating
K�

th;xx with the help of dimensionless quantities, as done
in Eq. (22), is rather unnecessary. But since we are solv-
ing the dimensionless forms of the continuity, momen-
tum and energy equations using FEMLab [15], the
output is in terms of dimensionless variables as well–
hence evaluation of K�

th;xx with the help of Eq. (22) is
straightforward.)
3. Results and discussion

In this section, the results obtained from numerical
simulations for the saturated region, where the absorp-
tion rate of resin by the tows is absent, is discussed first.
In this region, only the energy flux across the tow–gap
interface is present. This is followed by the results ob-
tained for the unsaturated region where both energy
and volume fluxes exist across the tow–gap interface.

3.1. Fully saturated dual-scale flow

The permeability of tows is many orders-of-magni-
tude smaller than that of the gap phase. As a result when
the tows get fully saturated, most of the resin passes
through the gaps and the sink term S computed through
Eq. (4) can be assumed to be negligible. But if the tow
and gap phases are not in thermal equilibrium, transfer
of energy takes place across the tow–gap interface even
though tows are not absorbing any resin8 (see Fig. 1).
The effect of this interfacial heat-flux on the effective
thermal conductivity during the saturated flow regime
through a dual-scale porous medium is studied here.

In Fig. 6, the xx component of the dimensionless
effective thermal conductivity K�

th;xx is plotted as a func-
tion of dimensionless interfacial heat-flux at zero and
8 This fact was observed by Jadhav and Pillai [17] as well
during their simulation of the mold-filling process in a two-
layered dual-scale porous medium.



Fig. 7. Effect of Péclet number on the effective thermal
conductivity at different interfacial heat-flux. Here the sink
effect is zero (i.e. liquid absorption by tows is zero or
v�gjgt � ngt ¼ 0).

Fig. 8. Effect of Péclet number on the effective thermal
conductivity at varying strengths of the sink effect. Here the
interfacial heat-flux q�gjgt � ngt ¼ �3.2.

Fig. 6. Effect of interfacial heat-flux on the effective thermal
conductivity at varying strengths of the sink effect.

Fig. 9. Effect of Péclet number on the ratio of effective thermal
conductivities at finite and zero sink strengths or interfacial
absorption rates.
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non-zero sink terms (or interfacial volume fluxes). The
plot indicates that K�

th;xx is independent of the interfacial
heat-flux. This also suggests that the one single effective
thermal conductivity can be used for the saturated re-
gion in the LCM mold irrespective of local thermal equi-
librium between the tow and gap regions.

The focus is now turned towards studying the effect
of increasing the unit cell inlet velocity on the effective
thermal conductivity. Since the effective thermal conduc-
tivity depends on velocity deviations within the target
unit cell through its dispersion component (third term
in the RHS of Eq. (21)), the inlet velocity is expected
to have a significant impact on its magnitude. In
Fig. 7, the effect of increasing the inlet velocity on
K�

th;xx is studied by plotting the conductivity against the
Péclet number. As expected, the effective thermal con-
ductivity increases as a function of Péclet number in
the form of K�

th;xxaPe
1.5.

3.2. Unsaturated dual-scale flow

In the unsaturated region behind the front as shown
in Fig. 1, the resin seeps into the tows and give rise to the
�sink� effect mentioned with the equation of continuity
(Eq. (3)). The sink term S, directly proportional to the
interfacial volume flux, is governed by the liquid absorp-
tion rate of tows. In this section, we wish to study the
effect of �sink� phenomenon or the liquid absorption rate
of tows on the effective thermal conductivity.

In addition to suggesting that the dimensionless effec-
tive thermal conductivity K�

th;xx in target unit cell is inde-
pendent of the interfacial energy flux in the saturated
region, Fig. 6 also suggests that this is true even in the
unsaturated region as long as the inlet velocity does
not change. Fig. 8 shows K�

th;xx as a function of Péclet
number at different interfacial volume flux and at a con-
stant interfacial heat-flux. The plot suggests that K�

th;xx

continues to be a strong of function of Péclet number
but is independent of absorption rate of resin at a given
interfacial energy flux. In Fig. 9, the ratio of K�

th;xx at a
given interfacial volume transfer rate and at zero rate
is plotted as a function of Péclet number to capture
the nuances missed by Fig. 8. The plot indicates that
the effective thermal conductivity increases at a slightly
faster rate at higher interfacial volume transfer rates.
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The observations drawn from Figs. 6, 8 and 9 have
some potentially useful implications. One can conclude
that the effective thermal conductivity term is a function
of Péclet number and is independent of either the resin
absorption rate by tows (the �sink� effect) or the energy
flux from tows into the gap region.

3.3. Effect of gap fraction on Kth,xx

Since the extent of the gap region is expected to influ-
ence the temperature and velocity distributions (and
hence the dimensionless effective thermal conductivity
K�

th;xx), the simulations are carried out at three different
gap fractions (eg) to study the effect of the inter-tow
spacing in a dual-scale medium on K�

th;xx.
Fig. 10 shows the effect of the resin absorption rate

by tows on K�
th;xx at eg of 26%, 40%, and 61%; it is evi-

dent that the K�
th;xx is only a weak function of the resin

absorption rates. Further, it appears that K�
th;xx can

either increase or decrease with an increase in the
absorption rate depending on the structure and porosity
Fig. 10. Effect of absorption rate on the effective thermal conducti
interfacial heat-flux q�gjgt � ngt ¼ �3.2.

Fig. 11. Effect of heat-flux on the effective thermal conductivity a
of the gap region. This increase or decrease in the effec-
tive thermal conductivity is primarily driven by the dis-
persion term. Taking a closer look at the dispersion
(third) term in Eq. (21) reveals that the integrand is a
product of deviations of the local temperature and
velocity, with denominator as the gradient of the gap-
averaged temperature. When the resin absorption rate
increases, the average velocity at the outlet of the target
unit cell decreases, and the average outlet temperature
increases, resulting in an increase in both the velocity
and temperature deviation terms. The effect of absorp-
tion rate on K�

th;xx depends on whether the integral of
the product of both these deviations increases faster or
slower than the temperature gradient.

Fig. 11 plots K�
th;xx as a function of the gap–tow inter-

facial heat-flux. Clearly, the effective thermal conductiv-
ity is independent of the heat-flux at all three gap
fractions.

Both Figs. 10 and 11 indicate that K�
th;xx is a strong

function of the gap fraction eg. Since eg is related to
gap volume within the target unit cell, one can surmise
vity at different gap fractions (eg = 0.61, 0.40, 0.26). Here the

t different porosities (e = 0.61, 0.40, 0.26). v�gjgt � ngt ¼ 0.01.
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that the effective thermal conductivity increases rather
strongly with an increase in spacing between tows.
4. Conclusions

Variations in the relevant xx component of the effec-
tive thermal conductivity of a dual-scale porous medium
were successfully estimated using a 2D non-isothermal
flow simulation in a unit cell. Numerical predictions re-
vealed some unexpected and potentially useful insights
into how the effective thermal conductivity responds to
changes in the inlet velocity, interfacial volume flux from
gaps into tows, interfacial energy flux from tows into the
gap phase, and spacing between tows. Neither the resin
absorption rate nor the energy flux across the tow–gap
interface seems to have a significant effect on the effec-
tive thermal conductivity of resin in gap phase. This im-
plies that the effective thermal conductivity measured for
the saturated flow in a dual-scale porous medium can
perhaps be applied to the unsaturated region behind
the flow front as well. Moreover in the saturated region,
the effective thermal conductivity is indifferent to the
presence or absence of local thermal equilibrium be-
tween tows and gaps. Predictably, an increase in spacing
between tows leads to an increase in the effective thermal
conductivity.

4.1. Limitations and future work

The current work aims to estimate the relevant xx

component of the effective thermal conductivity tensor
of a dual-scale porous media during the saturated and
unsaturated flow.

But it fails to tell us anything about the other compo-
nents or the invariants of the tensor. We would like to
explore if those other components can be estimated
under other ideal flow conditions in a unit cell under dif-
ferent boundary conditions. The present work treats
liquid absorption flux and heat release flux on tow sur-
faces as parameters; in a real mold-filling situations, these
quantities are changing rapidly with time during the
unsaturated flow and are governed by flow conditions in-
side and outside the tows. So perhaps a more involved
transient flow simulation with interfacial flux changing
with time in a highly non-linearmanner is needed to study
the evolution of Kth,xx during the unsaturated flow.
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Appendix A. Simplified effective thermal conductivity

tensor for flow perpendicular to periodically placed

cylindrical tows

This appendix shows how each of the components of
the average effective thermal conductivity tensor simpli-
fies for flow of resin across tows as shown in Fig. 5 by
evaluating Eq. (17) which is reproduced here for
completeness.

K th;ij ¼ kgegdij þ
kg
V

Z
Agt

ngt;ibj dA�
qgCp;g

V

Z
V g

v̂g;ibj dV

ðA:1Þ

Since the pressure gradient is applied in the x direction
and the axis of the cylindrical tows coincides with z

direction, the normal vector at the tow–gap interface
does not have a z component. In addition, the velocity
vector of the resin in the gap phase does not have a z

component either. Thus both ngt,z and v̂g;z are identically
equal to zero and hence Kth,zx and Kth,zy vanish, and
Kth,zz becomes a constant of value kgeg. Because of lack
of change along the z direction, the temperature remains
constant in this direction implying that the temperature
deviation in the z direction is zero. Hence the term bz is
zero and as a result, both Kth,xz, and Kth,yz reduce to
zero. The remaining terms of the average effective ther-
mal conductivity tensor are shown below.

K th;xx ¼ kgeg þ
kg
V

Z
Agt

ngt;xbx dA�
qgCp;g

V

Z
V g

v̂g;xbx dV

ðA:2Þ

K th;xy ¼
kg
V

Z
Agt

ngt;xby dA�
qgCp;g

V

Z
V g

v̂g;xby dV ðA:3Þ

K th;yx ¼
kg
V

Z
Agt

ngt;ybx dA�
qgCp;g

V

Z
V g

v̂g;ybx dV ðA:4Þ

K th;yy ¼ kgeg þ
kg
V

Z
Agt

ngt;yby dA�
qgCp;g

V

Z
V g

v̂g;yby dV

ðA:5Þ

Both integral terms on the RHS of the Eq. (A.2) are not
identically equal to zero and hence Kth,xx is not a simple
constant. In the target unit cell, each point in the lower
half of the unit cell has a mirror image across the plane
of symmetry y = s/2, and both these points have the
same value of bT g (equivalently have same bx as the tem-
perature gradient vector is along the x direction only),
and equal and opposite values of ngt,y and v̂g;y . As a re-
sult, the terms

R
Agt
ngt;ybx dA and

R
V g
v̂g;ybx dV are identi-

cally equal to zero, and hence Kth,yx is also zero. Since
by can be evaluated only when the volume-averaged tem-
perature gradient is applied along the y direction, noth-
ing can be said about the Kth,xy and Kth,yy as both these
components contain the indeterminate by because the
volume-averaged temperature gradient exists only along
the x direction. In any case, as the temperature gradient
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does not exist in the y direction, the magnitudes of both
these components do not have any bearing on the energy
equation and hence do not hinder our analysis in
anyway.

So the final effective thermal conductivity tensor in
matrix form is

Kth ¼
K th;xx K th;xy 0

0 K th;yy 0

0 0 kgeg

2
64

3
75 ðA:6Þ
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